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A class of stochastic processes is studied that can be used to model elementary 
and complex chemical reactions composed of a series of several distinct steps. 
Formal correlation function expressions are directly computed for the stochastic 
model to yield the overall rate constant for the reaction. One of the main results 
is a formula connecting the overall rate constant to the rate constants charac- 
terizing the elementary steps of the reaction. 
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1. I N T R O D U C T I O N  

The conversion of reactants to products in a chemical reaction is frequently 
an indirect process that consists of a series of dynamically distinct events. 
A simple example that possesses these features is a diffusion-influenced 
reaction. Here the approach of reactants toward each other from large dis- 
tances is diffusive in character, while the intrinsic reactive event leading to 
products is governed by short-range forces and the dynamics is non- 
diffusive. Other examples are provided by isomerization and dissociation 
reactions that involve potential wells separated by barriers; in these cases 
the energy relaxation in a potential energy well has a different character 
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from the barrier-crossing dynamics. One goal of a theory of chemical reac- 
tion rates is to take into account the presence of the different dynamical 
events that contribute to the overall rate of the reaction. 

These features have been recognized and accounted for in many of 
the classic theories of reaction dynamics. Examples are Lindemann's (~> 
treatment of the contributions of collisions and internal dynamics to 
unimolecular decay processes, Kramers '(2) treatment of barrier-crossing 
dynamics where different dynamical regimes are recognized, and 
Smoluchowski's (3) and Noyes '(4) studies of diffusion-influenced reactions. 
This latter case provides a clear illustration of some of the features of reac- 
tion rates that are the focus of this paper. Following Smoluchowski, many 
approaches to this problem incorporate the short-range dynamical effects 
through a boundary condition on the diffusive dynamics, or through a sink 
term (see, e.g., ref. 5). In a more general context it has been shown that the 
overall rate constant for a diffusion-influenced reaction k can be written in 
the form (6) 

1 1 1 
+ (1.1) 

k k,  k D 

where ks is the rate constant that characterizes the short-range events and 
kD = 4~RD is the Smoluchowski result for a diffusion-controlled reaction, 
with R the radius of the perfectly absorbing spherical sink and D the diffu- 
sion coefficient. The derivation of this result from a microscopic kinetic 
theory involves many subtle features. (7) 

Addition formulas like (1.1) are found to arise in a number of different 
contexts (8-14) and, while their molecular origin is not always clear, they 
provide a convenient way to account for and interpolate between contribu- 
tions arising from widely differing kinds of dynamics. The present paper 
considers a class of chainlike (non-Markovian) stochastic models for 
chemical rate processes, in which the transition from reactants to products 
occurs through a series of intermediate regimes, whose solution yields addi- 
tion formulas for the overall rate that are generalizations of (1.1). The 
assumptions of the stochastic model that lead to this result can be analyzed 
to provide insight into the features of the microscopic dynamics that are 
necessary in order to obtain simple addition formulas. While the stochastic 
model is not completely general, it has the attractive and unusual feature 
that exact rate coefficient results can be obtained. In addition, the formula- 
tion has potential applications in the context of reactions occurring far 
from equilibrium that are driven by external noise sources with simple 
statistical properties. (is) 

The general stochastic model is presented in Section 2 and a number 
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of results are derived that relate the transmission coefficient between the 
reactant and product  states of the model to transmission coefficients 
between intermediate states. 5 The formulas derived in this section con- 
stitute the stochastic basis of the addition formulas. The rate coefficients 
are calculated in Section3, starting from the stable-states-picture (1~ 
correlation function expression. The results are discussed in Section 4. 

The results presented in this paper  are general in character and apply 
to any type of (non-Markovian)  process in the intermediate regimes. In the 
companion paper  (17/ we illustrate this formalism by considering a number 
of explicit stochastic models for barrier-crossing dynamics. 

2. C H A I N L I K E  S T O C H A S T I C  M O D E L S  A N D  A D D I T I O N  
F O R M U L A S  

The transition between a reactant R and a product P can be described 
by the motion of a set of coordinates ("particle") on a potential energy 
surface, with the R and P regions typically separated by potential barriers. 
The coordinates describing the reaction could represent the internuclear 
separation between atoms or some internal degrees of freedom in a 
molecule. 

2.1. Formal  Descr ip t ion  of  Chain l ike  M o d e l s  

For  a many-body system the dynamics of the reaction coordinate is, 
in general, extremely complicated. In this paper, we consider a class of 
systems that retains some of the main features of this dynamics and yet are 
exactly solvable. These systems have a linear or chainlike dynamical struc- 
ture in the following sense: they are models of an overall reaction R ~ P 
which is composed of a certain number  of elementary steps 0, 1, 2 ..... i,..., n, 
which we call regimes, such that R ~ P is achieved if and only if 1 ..... n are 
achieved, and moreover step i cannot occur before the preceding steps 
0, 1,..., i -  1. 

Each step or regime i represents a certain evolution (deterministic or 
stochastic) which is simpler than the overall reaction. Our  purpose is 
to combine these regimes to obtain the overall reaction R ~ P  and to 
compute the overall evolution in terms of the simpler evolution within each 
step. 

We begin by specifying the structure of the model in more detail. In 

5 Similar ideas were introduced by Bellman and Wing (~6) in a study of reflection and transmis- 
sion coefficients associated with a linear differential equation on a segment. We thank 
P. Bertrand (ONERA) for pointing out this reference. 
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each regime i, the state space of the degree of freedom is denoted X;. The 
particle moves in the linear chain of the Xi in the following way (cf. Fig. 1): 
suppose that at some time t, the particle is in regime Xi; then it wanders 
a certain amount of time inside Xi and finally finds its way out of X~ to 
enter either regime Xi_ 1 or Xi+ 1. If it enters Xi+l, we suppose that there 
is a common boundary state a++l in X~ and X~+I such that when the par- 
ticle leaves X~ to enter Xt+ L it has to pass through a++ ~. If instead the par- 
ticle leaves X; to enter X~_ 1, we suppose that there is a common boundary 
state a7 in Xi and X~_I such that when the particles leaves X~ to enter 
X~_ 1 it has to pass through a/-. 

We have represented this situation very schematically in Fig. 1. The X~ 
are represented by boxes; X~ and Xi+l have two common states, namely 
a++l and aF+l, which are represented by large dots with an arrow to 
indicate the "direction" of the motion: when the particle is in a++ 1, the 
motion is necessarily from X~ to X~+ 1, and when the particle is in aT+ 1, the 
motion is necessarily from %~+1 to X~. In this picture, the dotted lines with 
their arrows indicate possible trajectories of the particle inside X;; for 
example, a particle coming from X;_I and entering Xi through a + may 
wander to some extent in Xi and finally exit from Xi e~ther by a,- or a++l 
as indicated by the two arrows issuing from a +. We can think of the _+ 
indices as the sign of a speed +_ v of the particle. The distinction between 
states corresponding to _+v is essential for the definition of fluxes in 
Section 2.5 and of rate constants in Section 3. 

The regimes Xo and X, are clearly special; they are respectively con- 
nected only to X1 by a ~ and to X , _  1 by a +. We specify the particle's fate 
when it arrives in a o or a~+l by assuming absorption there. Subsequently 
we shall identify the special Xo and X, regimes as the stable reactant (R) 
and product (P) states, respectively. 
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Fig. 1. A schematic diagram of the state space of the stochastic model. Shown are the 
different types of transitions among the entrance and exit states, and their total probabilities 
(see the text). 
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2.2. Evolution inside a Regime 

Within each regime, the evolution of the particle can be deterministic, 
stochastic, Markovian, or non-Markovian, but we shall assume that it can 
be computed so that the segment rate constant for X~ can ultimately be 
found. As a necessary preliminary, we need to characterize the dynamics in 
each regime. We first consider a given regime X~ as isolated: when the 
particle leaves X~ either by a 7 or a++a, it never returns. We need to define 
the following quantities: 

S(a++l, t la +) is the probability to be in a++l at time t, knowing that 
the particle started from a + at time 0, i.e., entered X~, and remained inside 
Xi during [0, t]. 

R(ay, t l a + ) is the probability to be in a 7 at time t, knowing that the 
particle started from a + at time 0 and remained inside X~ during [0, t]. 

In a similar way, we also define S(a 7, tlai+l) and R(a++l, tla~+l). 
These probabilities are the weights of the dotted paths shown in Fig. 1. 

The main quantities of interest are the long-time limits of the 
probabilities defined above: 

Si, i+l = lim S(a[+ I, tla +) 
t ~ o o  

Ri ,  i+ 1 = lim R(a 7, tla/~) 
t ~ o O  

Se+ ~,i = lirnoo S(a;-, t l aT+ ~) 

(2.1) 

Ri+~,i= lira R(a~+l, tlaT+l) 
r  

Si ,  i+ 1 is the probability of leaving regime X i by the state a+§ 1, knowing 
that the particle entered regime Xi by the state a + and stayed the entire 
time in Xi. The term Ri,,-+1 describes the other possibility; it is the 
probability of leaving regime Xi by the state a 7, knowing that the particle 
entered regime X~ by the state a~ + and stayed the entire time in Xi. The 
other two quantities S~+1,~ and R,+~.i, have similar interpretations. With 
these definitions, we have the obvious conservation equations 

Si,  i+ l ~- Ri ,  i+ 1 : ] 
(2.2) 

S i + l , i q - R i + l , i :  1 

Later we relate these quantities to the rate constant for the regime Xi 
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[see formula (3.6)]. If we define in a standard way the Laplace transform 
of a function f ( t )  by 

~C(s) = f ~ e "tf(t) dt 
Jo 

we see that 

St, i+ 1 = lim s~(a~+ 1 , s la + ) 
s ~ O  

Ri,~+ 1 = lim s k ( a ~ ,  s la + ) 
~ o  

and so forth for St+ 1,e and Ri+ 1,i. 

(2.3) 

2.3. Combinat ion of  T w o  Successive Regimes 

Having completed the formal description of the particle evolution in 
a single regime, we now consider the evolution of the particle in two 
successive regimes, X i w  Xi+l;  for this combined system, the particle can 
enter by the state a + or a,-+ 2 and leave by the states a~ or a++ 2 (cf. Fig. t). 
Our main assumption is that each time the particle changes its regime, it 
begins an independent evolution in the next regime. Nevertheless, the total 
evolution can be non-Markovian. 

In our problem, we need not follow the detailed motion inside Xi or 
Xi+l,  but we must concern ourselves with the way that the particle 
changes its regime. We can then consider that the particle exists only on a 
reduced six-point state space {a+,a++~, a++2} on which it performs a 
non-Markovian motion. The allowed transitions are shown by the arrows 
on the dotted edges of the oriented graph of Fig. 1. We call P(a++ 2, t[ l) the 
probability to be in the absorbing boundary state a++2 at time t, starting 
from state l = a +, a++ 1, aT+ 1 at time 0 and remaining during the entire time 
[-0, t] on the reduced state space {a +, a++l, a++2}. From the definitions 
introduced in Section 2.2, we obtain the following evolution equations: 

d + 
P(a~-+2, t [a / - )=  P(a[+2, t - r l a L 1 ) ~ S ( a i + ~ , r l a ~ + ) d ~  (2.4a) 

P ( a L 2 ,  t l aL~)=S(a /~§  t l a L ~ ) +  P(a~-§ t -~ laT+~ 

d 
x ~ R(aT+~, ~ l a L 1) dr (2.4b) 

fs R(a~+l, ~la;-+l ) & (2.4c) 
d 

P(a~+2, t]ai-+l) = P(a~+z, t-Tla~+l)-d-~r 
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The interpretation of these equations is straightforward. For example, 
Eq. (2.4b) states that the total probability to be at a++2 at time t, starting 
from a++~, is composed of two contributions: (1)the probability of being 
absorbed at time t starting from a,.++ 1 and staying in X~+ 1 without entering 
X i, which is just S(a~+ 2, t la~++~), and (2) the probability of being absorbed 
at a~++ 2 at time t starting from a~++ 1 and entering X~ at least one time ~. This 
probability is itself composed of the product of (d/dr)R(a[-+~, ~1 a/-+l)dr 
(which is the probability of arriving at a~+ 1 in the time interval [z, T + dr]  
and staying in X~+, during [0, t]), and P(a~2,  t -~ laT+~)  (which is the 
probability of starting from a,-+~ at ~ and arriving at a~++2 at time t). 

After Laplace transformation, Eqs. (2.4a)-(2.4c) can easily be solved 
for the Laplace transforms/~(a,.++2, s I I) to give 

where 

P(a~+2,sla+)=S(a~+2, s]a~+,)sS(a~+l,sla+)D(s) 1 (2.5a) 

P ( a L  2, sl a L  1)= S ( a L  2, sl a~+ ~) D(s) -1 (2.5b) 

P(a?+2, slaT+l)=~(a~+2, sla?+l)sfi(a?+,,slaT+~)D(s) -~ (2.5c) 

D(s) = 1 - sfi(aT+ l, s ]aT+ 1) sk(a;-+ l, sla L 1) 

With these equations we can calculate the probabilities of absorption 
at the boundaries for 5(iw Xi+~: we define S,.~+2=the probability to be 
absorbed by the right boundary a++ 2, knowing that the particle started at 
time 0 from the left boundary a + and remained in X i ~ X i +  ~ the entire 
time. We have 

S~,~+2 = lira P(aT+2, t la+)=limsP(a~+2,  sla +) (2.6) 
t ~ o O  s ~ O  

If we multiply Eqs. (2.5) by s and take the s =  0 limit, taking into 
account Eqs. (2.3) and (2.6), we obtain the relations 

Si, i+2=P(aL2 ,  ~ [a +) =S,,i+tS~+I,i+2D(O) -1 (2.7a) 

P ( a L  z, ~ ]a~+ ~) = Si+ 1.~+ 2D(0) - '  (2.7b) 

P(a~+2, ~ I a,-+,)= Si+l,i+2Ri+,.iD(O) -1 (2.7c) 

with 

D(0) = 1 - Ri+ 1.i+ 2Ri+ 1,i 
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From (2.7a) and (2.2) we then obtain the fundamental formula 

Si+li( 1 ) 1 _ 1 1 + ~  1 (2.8) 
Si.i+2 1 S,.i+-- 1 i.i-i-i Siq-~,i+2 

This equation provides a relationship between Sia+z (related to the com- 
bined evolution in X i w X g + l )  and Si, i+l,  S~+1,~ (related toXi) and 
Si+l,i+2 for Xi+l.  

At this point, it is interesting to rewrite Eq. (2.8) in a more symmetric 
form by defining overall equilibrium probabilities q,. satisfing the detailed 
balance conditions 

qiSi, i + 1 : qi + I Si+ 1,i (2.9) 

These quantities may be computed by starting from any qo and defining the 
successive quotients 

qi+ 1 Si, i+ 1 

qi Si+ 1,i 

and normalizing by 

n + l  

qi =1  
i = 0  

Using (2.9), we can rewrite the fundamental formula (2.8) as the addition 
formula 

_ 1 1 ~ +  1 ( 1 1) 
qi 2 / ~i+a \'Si+-l,i+2 

(2.10) 

2.4. Combinat ion  of the n + l  Regimes Xi  

We consider now dynamics in the whole system Xo w X 1 u .. .  w X,. 
We define P(a++l, t [a~-)= the probability to be absorbed by the extreme 

+ right boundary state a++l at time t, starting from ak at time 0 (and 
remaining the entire time in Xo w .-. w X,). For the entire system a o and 
a++~ are absorbing states and a~- and a~-+l are entrance states. Recall also 
that the particle loses memory each time it crosses the boundary a~ of any 
of the X regimes. As shown in Appendix A, the result Eq. (2.10) for two 
regimes may be generalized easily for the whole system. We first define 

So, n+~ = lim P(a,+,+,, t [ a ~ )  (2.11) 
t ~ o o  
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which is the probability to be absorbed by the extreme right boundary 
state a++l (forming stable product P) at some time, knowing that the 
particle started from a~- at time 0, i.e., entered the system from the left 
(from the stable reactant R). Then Eq. (2.10) can be generalized as 

1 ( ~ o l  1 ) =  s 1 (Sk~k+ 1) i 

qo +1 ~=oq~ 1 
(2.12) 

2.5. Def in i t ion of  the Fluxes 

We define the probability flux to be absorbed at some time in the 
extreme right boundary state a++l to form P (rather than a o to form R) 
in the system X0 • .-. u Xn, starting from a~- with speed + and a~- with 
speed - .  This is, by definition, 

q~(k) = P(a+~+l, oo l a ~  ) - P(a ,++l ,  ~ l a [  ) (2.13) 

We shall show in Section 3 that this quantity is intimately connected to the 
overall R ~ P rate constant for the process. In (2.13), k can take the values 
0, 1, 2 ..... n, corresponding to different initial points for the probability flux. 
If k = 0, then P(a++ 1, ~ ] a o  ) =- 0; there is no probability flux of forming P, 
since R is formed. We show in Appendix B that the various fluxes satisfy 
a flux conservation condition: 

qk~b(k )  = q,~(/) (2.14) 

for any 0 ~< k, l ~< n and that they satisfy the fundamental addition formula 

;1 ( 1~__~_ ) ~ 1 (~hl  h ) ~  l ( s h , ~ _  ~ 1) 1 = - -  - -  1 + - -  - -  ( 2 . 1 5 )  

h=k qh + 1  h=k qh 

3. RATE C O N S T A N T S  

3.1. Def in i t ions of  the Rate Constants 

In this section we turn to a consideration of the dynamics in the full 
system, UT,=o Xk, and regard its absorbing states a o and a++l as defining 
the reactants R and products P, respectively. The evolution between reac- 
tants and products occurs through a series of intermediate steps in the 
various regimes X;, and we shall compute, with the results of Section 2, the 
overall rate constant for the process in terms of the rate constants charac- 
teristic of the different regimes. 
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The starting point of the analysis is the correlation function expression 
for the R --* P rate constant k obtained from the stable-states-picture (SSP) 
of chemical reactions, (10) 

;o k=ki , ,+l  = dt ( j i (O)j ,+l(t))R (3.1) 

where j ,  + l(t) is the probability current passing through a, § at time t into 
the product, and ji(0) is the initial total probability current through ai. 
The dynamics is subject to absorption at the boundaries 0 and n + 1. The 
angular brackets ( - - . )R  signify an average over the stochastic evolution of 
the system, normalized by the reactant partition function qo, with the 
initial condition that at time zero the system is in equilibrium at point ae. 
Equation (3.1) for the rate constant hinges on the recognition that the 
dynamics within the stable reactant and product regions does not con- 
tribute significantly to the rate constant and may be replaced by absorbing 
boundary conditions: only the dynamics in the intermediate regions is rele- 
vant. Our stochastic model explicitly incorporates such an assumption 
since the a o and a++l are absorbing states, so the SSP rate constant 
expression is ideal for our calculations. 

In the chainlike stochastic model there is an equal equilibrium prob- 
ability to have speed _ v at any point. If, as earlier, we let P(a++l, t[l) be 
the probability to be in the absorbing state a~++l at time t given that we 
start from l =  a~ at time zero and remain in the full system 07,=0 X~, then 
it follows that the correlation function (3.1) is 

(ji(O)j.+~(t))R_q~v d [_p(a~+l ' tla/_)_p(a++l ' t l a T ) ]  (3.2) 
qo dt 

where q~/qo is the ratio of the equilibrium populations in a; and in the 
reactant a 0. Thus, the R ~ P rate constant is 

qiV [p(a++ oo[a+)_p(a++l, oolaT) ] k = k i ,  n + l  = - -  1, 
qo 

= q~___~v ~(i) (3.3) 
qo 

where Eq. (2.13) has been used. It should be pointed out that this "rate 
constant" has the dimensions of velocity rather than reciprocal time. In 
order to recover the standard correlation function of probability and the 
corresponding rate constants from (3.2) and (3.3), q~ should be the 
probability density at ae, whereas qo is the probability at 0. The explicit 
calculations in paper II, (17) which consider specific forms for the absorbing 
and intermediate states, take this difference into account. 
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3 .2 .  A d d i t i o n  F o r m u l a s  f o r  C h a i n l i k e  M o d e l s  

Using Eq. (2.14), it is clear that k~,~+~ does not depend on the location 
ai where the initial current j~(0) is measured. Finally, using Eq. (2.15), we 
may write a general formula for the total rate constant: 

k ki,,~ + 1 iq-~ - l  

+ ~ q ~  . 1  1) 
h=i+l qhv \Sh, h+l 

qo 1 
qi ~ Si, i+l 

(3.4) 

This equation is a basic result of this section and expresses the overall rate 
constant in terms of the transmission coefficients for the intermediate 
regimes. 

In the remainder of this section, we rewrite the formula (3.4) in terms 
of rate constants characteristic of the intermediate regimes. Consider the 
rate constant for an elementary reaction step in regime X~. Its definition is 
a special case of Eq. (3.1) and, if we let k~,~+~ denote the rate constant for 
the ith regime, we have the SSP formula 

kr162 = dt (ji(O)ji+l(t))R (3.5) 

where a~ and a++~ are taken to be absorbing states, and the angular 
brackets denote an average over the stochastic dynamics in X~, normalized 
again by the reactant partition function qo. It follows directly from the 
definitions of Section 2.2 that 

vqi vqi 
ki, e+~ = - -  lim P(a~+~, tla~)=--S~,,+~ (3.6) 

qo ~ ~ qo 

This relation can be used to express (3.4) in terms of the segment rate 
constants k i ,  i+ 1. However, since the factors 

qo; 1 1) 
qi  v \ Si ,  i + 1 

appear in the formula for the overall rate constant, it is convenient to first 
interpret these factors and express them in terms of effective rate constants. 

The transition state theory (TST) rate constant k xsT for any reaction 
is computed from the equilibrium one-way flux across a surface separating 
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the reactant and product regions. The TST rate constant for regime i takes 
the simple form 

kTST qi  v (3.7) 
i,i+ 1 = - -  

qo 

i.e., just the speed of the particle v times the equilibrium probability qi/qo 
to be at ai relative to that of the reactant. If we define an effective rate 
constant for the ith regime by 

1 qO(Si,1 ) 1 1 
b.ef f ~ 1 = kTST (3.8) 
'vi, i + l  q i  v ~+1 ki ,  i + l  . - i , i + l  

eft so that ki ,  i+ 1 m e a s u r e s  the departure from the TST rate, we obtain 

1 1 1 ~ 1 
1 1 ~ elf t - - -  + ~ e~ (3.9) 
k ki ,  n+ 1 h = i k h ,  h _ l  k i ,  i+ 1 h=i+l kh ,  h + l  

This formula is a major result of this paper and completely expresses the 
overall rate constant for the chainlike model in terms of rate coefficients for 
the individual regimes. Its chief advantage is that it reduces the rate 
calculation to that for each regime with absorbing boundary conditions; 
once these simpler dynamical problems are solved, the full rate constant 
can be constructed from Eq. (3.9). 

Equation (3.9) is of the form of the rate constant relation which 
follows from the general SSP theory. (1~ The present result is exact for the 
stochastic model, whereas the SSP result requires certain approxima- 
tions. (1~ In addition, (3.8) expresses the rate constants for the individual 
regimes simply in terms of the transmission probabilities. 

4. CONCLUSION 

The reciprocal of the overall rate constant for the chainlike stochastic 
model has been shown to satisfy an addition formula involving the recipro- 
cals of the rate constants characteristic of the intermediate regimes. While 
the stochastic dynamics of the system is non-Markovian in general, it is the 
partial Markov assumption whereby the "particle" loses memory when it 
moves from one regime to the next, in conjunction with the chainlike 
nature of the model, that gives rise to the addition formula for the rate con- 
stant. As such, the general stochastic model provides some insight into the 
dynamical features that are responsible for the observed approximate 
validity of the addition formulas for real rate processes. The results are 
general in that the dynamics in the individual regimes is not specified and 



Stochastic Theory of Chemical Reaction Rates .  I 891 

thus the results may be applied to a variety of systems. Because a large 
class of reacting systems involve a series of intermediate steps of a distinct 
dynamical nature, the formulas derived here allow the overall rate constant 
to be constructed from an analysis of the rate constants for the constituent 
processes, which is a much simpler task. 

Some applications to non-Markovian stochastic models for barrier- 
crossing dynamics are given in the companion paper. It is also shown there 
that the same techniques can be generalized to treat processes with a 
branching step that destroys the chainlike character of the model. 

APPENDIX  A 

Equation (2.12), which is applicable to the system Xo w --- u X n, may 
be obtained as follows: the system may be reduced to the two-regime case 
by dividing it into two parts: 

~ u . . . u ~ = ~ w Y  (A.1) 

where Y = X  1 kd . . .  U X n ;  the absorbing states for X0 are a o and a~-, and 
those of Y are a~- and a~++ 1. The transmission coefficients for Xo are So,~ 
and $1,o, while those for Y are denoted by $1.,,+1 and Sn+l,1, and Sl,n+ 1 
is defined to be the probability to be absorbed in a~++l at some time, 
starting from a [  at time 0 and staying in Y all the time. 

Equation (2.8) can be applied to X 0 u Y to yield 

$ 1 o /  1 1) 1 1 =  
So, n + 1 So,1 

which can be rewritten, using (2.9) for i =  0, 

1(1),(1 
qo ~o.~+ 1 = - -  (A.2) qo ~ o ,  1 -  + 1  1 q l  ~l l ,n+ 1 1 

Induction can be applied to the second term on the right-hand side of (A.2) 
to obtain Eq. (2.12). 

APPENDIX  B 

To obtain (2.14) and (2.15) we use induction. First we start from the 
two-regime situation Xi u Xi+ 1. We use notation of Section 2.3, and define 
the flux for the two-regime system Xi w Xi+~ as 

~ ( i , i + 1 ) ( k ) = P ( a i + + 2 ,  oo [a~)-P(a++2, oo las (B.1) 
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where k takes only the values i or i + 1; more precisely, 

q~(i,i+ 1~(i ) = p ( a L  2, oo l a~ ) = Si, i+ 2 (B.2) 

@(i'i+ l)(i + 1) = P(a++2, oo l a + l ) -  P(a++ 2, oo lai+1) 

Si+ 1,i+ 2Si+ L,i 
= (B.3) 

1 - R i + l , i + z R i + l ,  i 

[this last equation has been deduced from Eqs. (2.7b) and (2.7c)]. From 
(2.7a)-(2.7c) and from the definition (2.9), we obtain easily the flux conser- 
vation 

q i~  (i'i+ 1)(i) = qi+ 1 ~("~+ ~)(i + 1) (B.4) 

and we also obtain from (B.3) 

1 1 1 + Si-+l,i r 1= "Si+1,i+2 

To prove Eq. (2.15), we split Xo ~ .. .  w X, into two subsystems: 

Yo = Xo u ... u Xk (absorbing states ak+ 1 , +  a o ) 

Y1 = Xk + 1 w ... w Xn (absorbing states ak+ 1, a++ 1 ) 

We can apply (B.5) to this two-regime situation to obtain 

~(k)  1 =  ~ + - 1  (B.6) 
+ 1  

Then Eq. (2.15) is obtained from (B.6) after multiplication by qk-1 and use 
of Eq.(2.12) to express (1 /Sk , ,+ l - -1 ) (1 /qk )  as a sum and also 
(1/Sk, o- -1) (1 /qk)  as a sum (reversing the motion). The detailed balance 
equation (2.14) follows from a similar generalization of Eq. (B.4). 

A C K N O W L E D G M E N T S  

This work was supported in part by grants from the Natural Sciences 
and Engineering Research Council of Canada (R.K.), the donors of the 
Petroleum Research Fund administered by the Americal Chemical Society 
(R.K., J.T.H.), the National Science Foundation, grants CHE84-19830 and 
CHE88-07852 (J.T.H.). 



Stochastic Theory of Chemical  Reaction Rates. I 893 

REFERENCES 
1. F. A. Lindemann, Trans. Faraday Soc. 17:598 (1922). 
2. H. Kramers, Physica 7:284 (1940). 
3. M. V. Smoluchowski, Phys. Z. 17:557 (1916). 
4. R. M. Noyes, Prog. Reaction Kinet. 1:128 (1961). 
5. G. Wilemski and M. Fixman, J. Chem. Phys. 58:4009 (1973); S. Lee and M. Karplus, 

J. Chem. Phys. 86:1883 (1987). 
6. S. H. Northrup and J. T. Hynes, Chem. Phys. Lett. 54:244 (1978); J. Chem. Phys. 71:871 

(1979). 
7. R. Kapral, Adv. Chem. Phys. 48:71 (1981); M. Schell and R. Kapral, J. Chem. Phys. 75:915 

(1981). 
8. J. Troe, in Physical Chemistry, an Advanced Treatise, Vol. 6B, H. Eyring, W. Jost, and 

D. Henderson, eds. (Academic, New York, 1975). 
9. S. H. Northrup and J. T. Hynes, Chem. Phys. Lett. 54:248 (1978); J. Chem. Phys. 69:5246 

(1978); A. G. Zawadzki and J. T. Hynes, Chem. Phys. Lett. 113:476 (1985). 
10. S. H. Northrup and J. T. Hynes, J. Chem. Phys. 73:2700 (1980); R.F. Grote and 

J. T. Hynes, J. Chem. Phys. 73:2715 (1980); J. T. Hynes, in Theory of Chemical Reaction 
Dynamics, Vol. 4, M. Baer, ed. (CRC Press, Boca Raton, Florida, 1985), p. 171. 

11. J. T. Hynes, R. Kapral, and M. Weinberg, J. Chem. Phys. 67:3256 (1977); 69:2725 (1978); 
70:1456 (1979); M. Pagitsas, J. T. Hynes, and R. Kapral, J. Chem. Phys. 71:4492 (1979). 

12. L. D. Zusman, Chem. Phys. 49:295 (1980); H. Friedman and M. Newton, Faraday Disc. 
Chem. Soc. 74:73 (1982); D. Calef and P.G. Wolynes, J. Phys. Chem. 87:3387 (1983); 
J. T. Hynes, J. Phys. Chem. 90:370 (1986). 

13. B. Carmeli and A. Nitzan, Phys. Rev. Lett. 49:423 (1982); J. Chem. Phys. 80:3596 (1984). 
14. M. Borkovec and B. J. Berne, J. Phys. Chem. 89:3994 (1985); J. Chem. Phys. 82:794 

(1985). 
15. I. L'Heureux and R. Kapral, in Chemical Reactivity in Liquids; Fundamental Aspects, 

M. Moreau and P. Turq, eds. (Plenum Press, New York, 1987), p. 297. 
16. R. Bellman and R. Wing, An Introduction to Invariant Embedding (Wiley, New York, 

1975). 
17. B. Gaveau, J. T. Hynes, R. Kapral, and M. Moreau, A stochastic theory of chemical 

reaction rates. II. Applications, J. Stat. Phys., this issue, following paper. 

822/56/5-6-22 


